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Retrieving Chromatin Patterns from Deep
Sequencing Data Using Correlation Functions
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ABSTRACT Epigenetic modifications and other chromatin features partition the genome onmultiple length scales. They define
chromatin domains with distinct biological functions that come in sizes ranging from single modified DNA bases to several
megabases in the case of heterochromatic histone modifications. Due to chromatin folding, domains that are well separated
along the linear nucleosome chain can form long-range interactions in three-dimensional space. It has now become a routine
task to map epigenetic marks and chromatin structure by deep sequencing methods. However, assessing and comparing the
properties of chromatin domains and their positional relationships across data sets without a priori assumptions remains chal-
lenging. Here, we introduce multiscale correlation evaluation (MCORE), which uses the fluctuation spectrum of mapped
sequencing reads to quantify and compare chromatin patterns over a broad range of length scales in a model-independent
manner. We applied MCORE to map the chromatin landscape in mouse embryonic stem cells and differentiated neural cells.
We integrated sequencing data from chromatin immunoprecipitation, RNA expression, DNA methylation, and chromosome
conformation capture experiments into network models that reflect the positional relationships among these features on different
genomic scales. Furthermore, we usedMCORE to compare our experimental data to models for heterochromatin reorganization
during differentiation. The application of correlation functions to deep sequencing data complements current evaluation
schemes and will support the development of quantitative descriptions of chromatin networks.
INTRODUCTION
Most processes in eukaryotic cells that involve interactions
with the genome are controlled by the chromatin context.
Accordingly, DNA replication, DNA repair, RNA expres-
sion, and RNA splicing have been found to be regulated
by different combinations of DNA methylation (5mC)
and histone modifications (1,2). The genomewide distribu-
tion of these and other chromatin features, like binding
sites of transcription factors, contact frequencies between
genomic loci, and transcriptional activity, can routinely
be assessed by deep sequencing (1). Recent methodolog-
ical developments enable the analysis of low cell numbers
or even single cells (3–5), the simultaneous readout of
various features (6), and the measurement of site-specific
binding dynamics (7). Thus, sequencing data at unprece-
dented resolution and throughput are becoming available,
providing a rich source of information on molecular net-
works that shape the chromatin landscape. However, there
is a gap between the widely used techniques for the qual-
itative analysis of sequencing data and what is needed for
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testing biophysical models that quantitatively describe the
dynamics of chromatin states and long-range gene regula-
tion (8). Specific objectives are, for example, to relate
the size and shape of modified domains to the underlying
formation mechanism; to assess the contribution of chro-
matin contacts to the establishment and maintenance of
chromatin states; and to describe the positional relation-
ship among different marks, which is an important step
toward understanding the function of distal regulatory
elements.

Currently, deep sequencing data are mostly analyzed on
the basis of local enrichments of read density, with the
goal to identify regions scoring positive for one or more
features of interest. Most of these approaches (see Table
S1 for an incomplete list) fall into two categories,
namely peak calling algorithms (9–11) and probabilistic
network models (12–14). Identification of enriched regions
typically involves assumptions about their characteristic
width and enrichment level, and regions above a certain
significance level are considered positive. While this
strategy is suitable for finding the most highly enriched
genomic regions, it does not preserve the information con-
tent of complex patterns that involve different enrichment
levels and are incompatible with binarization (Fig. S1).
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Furthermore, undersampling, noise, and technical bias
represent complications that can change the apparent read
density at individual loci, thereby introducing or masking
similarities between data sets when comparing them based
on sets of local enrichments (15–17). Due to these diffi-
culties, peak calling results depend on user-defined input pa-
rameters and the specific algorithm used (18,19). In turn,
chromatin state annotations differ with respect to state num-
ber, state identity, and spatial extension of the corresponding
chromatin domains (12,13). These uncertainties are particu-
larly critical for the study of heterochromatic regions, which
contain a combination of broadly distributed histone marks,
5mC, and associated proteins (20,21). Accordingly, quanti-
tative comparisons between the genomewide topology of
heterochromatin domains and the predictions from mecha-
nistic models for the formation and maintenance of hetero-
chromatin states (e.g., M€uller-Ott et al. (22), Hodges and
Crabtree (23), and Erdel and Greene (24) and references
therein) are currently fraught with difficulties.

Here, we introduce an approach termed ‘‘multiscale
correlation evaluation’’ (MCORE) that complements the
above-mentioned repertoire of analysis methods for
deep sequencing data. MCORE avoids assumptions about
the shape and the amplitude of enriched regions and eval-
uates all mapped sequencing reads without filtering. It re-
trieves information from correlation functions, which are
used for the discovery of patterns in noisy and possibly
undersampled data sets in many fields of research
(25–29). The use of correlation functions in the context
of deep sequencing has mostly been restricted to strand
cross correlation for measuring fragment lengths (18,30)
and short-range autocorrelation for comparing chromatin
immunoprecipitation sequencing (ChIP-seq) data sets to
each other (31). Key advantages of correlation functions
are the intrinsic removal of (white) noise, robust identifi-
cation of characteristic length scales, and straightforward
assessment of spatial relationships between two different
features. Conveniently, correlation functions can be used
to retrieve information about patterns with unknown ge-
ometry (Fig. S1). We used MCORE to analyze the chro-
matin landscape of embryonic stem cells (ESCs) and
neural cells (neural progenitor/brain cells, NCs) as their
differentiated counterparts, focusing on 11 different chro-
matin features (Table S2). These data sets covered histone
modifications, DNA methylation, RNA expression,
genome folding, and binding of chromatin-associated pro-
teins. For each feature, we identified the associated nucle-
osome repeat length and the characteristic domain sizes
along with their relative abundance in the genome. In a
pairwise analysis we determined the (anti)colocalization
and positional relationship between features on different
genomic scales and used the results to construct network
models for chromatin signaling. We compared ESCs to
NCs to retrieve information about the spatial reorganiza-
tion of chromatin during differentiation and to map the
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global transitions that occurred at active and repressive
chromatin domains. Alterations were most pronounced
for heterochromatic H3K9me3/H3K27me3 regions that
changed their size, their location within chromosome ter-
ritories, and their positioning relative to DNA methylation
and to each other.
MATERIALS AND METHODS

Calculation of normalized occupancy profiles

Sequencing reads were mapped to the mouse mm9 assembly using the

software Bowtie (32). Only uniquely mapping reads without mismatches

were considered and duplicates were removed. Mapped reads were pro-

cessed according to the following steps: Bisulfite sequencing (BS-seq)

data, which are used to map DNA methylation at single basepair resolu-

tion, are usually available as methylation scores calculated from the ratio

of converted reads divided by the sum of converted and unconverted reads

at a given position. These can be directly used for computing the correla-

tion function as described below. For all other sequencing readouts, the

coverage was initially calculated for each chromosome by extending the

reads to fragment length, yielding a histogram with the genomic coordi-

nate on the x axis and the number of reads per basepair on the y axis.

For Hi-C and ChIA-PET data, only interchromosomal reads were consid-

ered to identify the surface of chromosome territories. To calculate

normalized occupancy profiles, samples were processed depending on

the type of experiment. In general, it is important to account for fragmen-

tation bias, library preparation bias, and genome mappability. These

multiplicative biases are also included in the input sample and should

cancel out in the ratio of specific signal A and input signal I (A/I). In

RNA-sequencing (RNA-seq) experiments, the input signal can be replaced

by a sample of nucleosome-free, fragmented genomic DNA. For IP exper-

iments, it is additionally important to account for nonspecific binding dur-

ing sample preparation to obtain meaningful correlation functions (Fig. S2

B). This is of increasing importance for decreasing signal-to-background

ratio (Fig. S2 C). The appropriate control C can be obtained from an IP

with a nonspecifically binding antibody (e.g., IgG control) or from a sam-

ple that lacks the antigen of interest (e.g., a knockout cell line). We

devised the following strategy to compute normalized occupancy profiles

that were used in the subsequent analysis. First, the normalized coverage

of the control Cnorm and of the specific IP Anorm were obtained by dividing

by input signal I according to:

Cnorm ¼ C=I

hC=Ii and

Anorm ¼ A=I

hA=Ii:
(1)

Here, h.i denotes averaging along the genomic coordinate. For the calcu-

lation of coverage (C=I and A=I) and average values (hC=Ii and hA=Ii), po-
sitions with zero input coverage were neglected. Subsequently, the coverage

at these positions was set to the respective average value (hC=Ii or hA=Ii)
that was calculated for the remaining positions, thus eliminating fluctua-

tions and corresponding contributions to the correlation coefficient from

these positions. In the next step, nonspecific background signal was

removed to obtain the normalized read occupancy O:

O ¼ Anorm � b � Cnorm: (2)

In Eq. 2, the parameter b quantifies the contribution of the control signal

present as background in the sample (IP). To estimate b, we minimized

the absolute value of the Pearson correlation coefficient r0 at zero shift
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distance between the normalized occupancy O and the control coverage

Cnorm according to:

r0 ¼

��������
Pn
i¼ 1

ðOi � hOiÞðCnorm;i � hCnormiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼ 1

ðOi � hOiÞ2 Pn
i¼ 1

ðCnorm;i � hCnormiÞ2
r

��������
: (3)

Here, n denotes the maximum genomic position considered for the cal-

culation, which is typically the chromosome length. For the minimization

procedure, b was changed between 0 and 1. Because the minimum correla-

tion r0(b) indicates the lowest similarity between normalized occupancy

profile and control, the corresponding b value was used for normalization

according to Eq. 2.
Computation of correlation functions

The Pearson correlation coefficient r at shift distance Dx was calculated for

the corrected data sets after shifting the two occupancy profiles O1 and O2

with respect to each other by Dx basepairs according to (similar to Eq. 3 but

with a second shifted occupancy instead of the control coverage):
rðDxÞ ¼

1

2ðn� DxÞ
Xn�Dx

i¼ 1

½ðO1;i � hO1iÞðO2;iþDx � hO2iÞ þ ðO1;iþDx � hO1iÞðO2;i � hO2iÞ�

1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼ 1

ðO1;i � hO1iÞ2
Xn

i¼ 1

ðO2;i � hO2iÞ2
s : (4)
To sample the correlation function in a quasi-logarithmic manner

(33), profiles were binned by a factor of two after 25 shift operations

to double the step size. To preserve high resolution for small shift

distances, the first binning operation was carried out at a shift of

Dx ¼ 50 bp. This calculation was done for each chromosome sepa-

rately because continuous domains cannot exceed chromosomal

ends. Most correlation functions shown in the article refer to chromo-

some 1, which is representative for all chromosomes as judged by the

relatively small deviations among chromosomes (see Figs. 2, A and B,

and S8 B). However, correlation functions can also be calculated for

smaller genomic regions (see Fig. S1 for the correlation function for a

single domain).

To compare cross-correlation functions between different features,

normalization to the geometric mean of the two replicate correlation func-

tions was conducted according to:

rnormðDxÞ ¼ rcðDxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijr1ð0Þ � r2ð0Þ j
p : (5)

Here, rc is the cross-correlation coefficient at a given shift distance Dx, and

r1 and r2 are the replicate correlation coefficients of the data sets used. This

normalization step accounts for differences in the genomic distributions of

the features involved. For calculating the cross-correlation functions be-

tween two different features or the same feature in two different cell types,

at least two replicates for each sample were used. Accordingly, a cross-cor-

relation function for each combination of replicates was computed, which

results in n2 functions for n replicates of each sample, and the average of

these correlation functions was reported.
Statistical analysis of correlation functions

Statistical analysis of data was conducted by computing standard errors

(SEs) and 95% confidence intervals. To assess significance and associated

errors/confidence intervals for a given correlation function, we considered

several types of errors:

Statistical error of the computed correlation function

Because correlation functions are calculated from millions of regions,

they typically have a very small statistical error. The sample size N for

each shift distance Dx is given by the distance between the first and last

position that is covered on the chromosome (Pmin and Pmax) subtracted

by the shift length (Dx) according to NðDxÞ ¼ Pmax � Pmin � Dx. Based

on the sample size, 95% confidence intervals can be obtained using the

Fisher transformation (Fig. S8 A) (34,35). If normalized occupancy values

Oi follow a normal distribution reasonably well (Fig. S8 D), the Fisher

transformation is a good way to rapidly estimate confidence intervals

for correlation coefficients. An alternate nonparametric option that is

compatible with arbitrary sample distributions is bootstrapping (36). In

this case, occupancy profiles are resampled with replacement in pairs

(O1,i, O2,iþDx) and subsequently used for calculation of the correlation co-

efficient according to Eq. 4. This procedure is repeated multiple times to

obtain a distribution of correlation coefficients for every pair of resampled
occupancy profiles (Fig. S8 E) and every shift distance Dx. Based on

the width of this distribution, estimates for confidence intervals are ob-

tained. For the cases tested here, bootstrapping yielded moderately larger

confidence intervals than those obtained using Fisher transformation,

but intervals from both methods were of the same order of magnitude

(Fig. S8 F).

Variation among chromosomes

An estimate for the error of genomewide domain structures or positional re-

lationships can be obtained by comparing correlation functions calculated

for different chromosomes as shown in Fig. S8 B. If the relationship is gov-

erned by the same biological mechanism on all chromosomes, this variation

can be used to evaluate the error.

Reproducibility of experiments

Sample preparation might introduce a global bias into a given data set.

This is generally true for deep sequencing experiments, irrespectively of

which method is used for downstream analysis. Such variations among

replicates might not be captured by statistical comparisons conducted on

the basis of a single data set or a pair of data sets. Experimental reproduc-

ibility can be assessed with MCORE for data sets with at least three

different replicates by computing the correlation function for all possible

combinations of samples, i.e., n � (n � 1)/2 correlation functions for n

replicates. Subsequently, average and SEs are calculated. We found this

approach to be particularly useful to identify variations due to different

experimental conditions. For example, we evaluated the changes of

ChIP-seq results after using antibodies from different companies

(Fig. S10).
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Statistical comparison of two correlation functions

After correlation functions, associated errors, and confidence intervals

have been computed, two functions can be compared according to standard

statistical tests. An R-script that uses a t-test to assess the difference be-

tween two functions for each shift distance Dx (Fig. S8 G) is included in

the Supporting Material.
Quantification of MCORE correlation functions

Correlation functions obtained by MCORE provide information on the

overall degree of (anti)correlation between two deep sequencing data

sets but also reflect the underlying chromatin domain structure with

respect to 1) the number of chromatin domains, 2) the relative domain

abundance, 3) the length of the respective domains, and 4) the nucleo-

some repeat length. To extract the domain size distribution of a given

chromatin feature, two different strategies were implemented in

MCORE, which differ in the level of complexity but yield similar infor-

mation. The first approach is independent of user-defined settings and

computes parameters for the domain size distribution from the inflection

points of the correlation function in logarithmic representation and a

Gardner transformation of the correlation function. The Gardner trans-

formation characterizes the decay spectrum of a function in a nonpara-

metric manner (37). This workflow represents a robust approach to

evaluate genomewide features from deep sequencing data without input

parameters. In particular, inflection points are completely model-inde-

pendent, whereas the Gardner spectrum makes the generic assumption

that the decay spectrum can be approximated by a superposition of expo-

nential functions. The second approach can be used to quantitatively

describe the domain size distribution based on a fit function. For this

purpose, it is crucial to avoid overfitting of the data. Accordingly, we

implemented a complementary set of four fit options that allow for an

in-depth analysis of correlation functions reporting fit parameters and

their errors, thus determining domain sizes and their relative abundance.

The performance of the different fit approaches is described below and

in the MCORE software manual. The workflow we used in this article is

validated with simulated data in Fig. S7.

Least-squares spectrum fit

The exponential decay spectrum for the correlation function is optimized

by conventional nonlinear least-squares fitting. The amplitudes for a

given number of (logarithmically spaced) domains are optimized to

obtain a good fit. The goal of the spectrum fitting process is to determine

the length scales that are present in the decay spectrum of the curve. To

this end, it is not always necessary to exactly describe the shape of the

correlation function. For example, the initial decay of the function is

frequently too steep to be adequately fitted with a superposition of expo-

nential functions. Nevertheless, decay lengths are typically obtained in a

reliable manner. The multiexponential fit described below often performs

equally well in identifying length scales and provides a good description

of the correlation function. Thus, the least-squares spectrum fit is only

recommended if the multiexponential fit does not converge properly,

i.e., if it yields length scales that are very different from those determined

by the analysis of inflection points.

Maximum entropy method spectrum fit

Here, the exponential decay spectrum is fitted similar to the least-squares

method. However, the entropy of the amplitude spectrum is maximized

along with the fit quality. To this end, optimization is carried out in a param-

eter space that is spanned by the first derivative of the entropy and the first

and second derivatives of the fit quality according to the approach described

in Skilling and Bryan (38). This fit option is only recommended if the num-

ber of components obtained from the least-squares spectrum fit is much

larger than the number of inflection points.
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Multiexponential fit implemented in MCORE

For multiexponential fitting, the following equation consisting of a combi-

nation of exponential functions is used:

FðDxÞ ¼
X
i

ai � exp

�
�Dx

bi

�ni

: (6)

The exponential terms describe the domain structure of the correlation

function, with a , b , and n yielding the relative abundance, the half-width,
i i i

and the fuzziness of the ith domain, respectively. Small exponents ni corre-

spond to long-tail decays in the domain size distribution.

Multiexponential fit in R

The multiexponential fit implemented in R (39) uses a sum of exponential

functions (see Eq. 6) multiplied with an additional oscillatory term to

describe the correlation function:

FðDxÞ ¼
�
c1 þ ð1� c1Þ � cos

�
Dx

c2
p

�

� exp

�
�Dx

c3

��
�

X
i

ai � exp

�
�Dx

bi

�ni

:

(7)

The oscillatory term accounts for the nucleosomal pattern, with parameters

c1 for the strength of the nucleosomal oscillation, c2 representing the nucle-
osomal repeat length, and c3 the scale on which regular nucleosomal

spacing is lost. When using this approach, the minimal number of exponen-

tial terms that yielded uncorrelated fit residuals was chosen.
MCORE running time

Generation of normalized occupancy profiles and calculation of the respective

correlation function for the entire chromosome 1 takes 15–20min on a laptop

computer with a 2.7 GHz Intel Core i5 processor and 8 GB memory. For

smaller chromosomes or genomic regions of interest, the calculation is faster.
Peak calling

Peak calling was done using MACS (10) and SICER (11). Before peak call-

ing reads were preprocessed as described above, including mapping to the

mouse mm9 assembly by Bowtie (32), considering only uniquely mapping

reads without mismatches and removing duplicates. Peak calling was done

using default parameters and the input as control file. For H3K36me3

MACS, mfold levels 5, 10, and 30 were tested, and mfold 5 was selected.

For SICER, the FDR threshold was set to 0.0001, a window size of 200 bp

and a gap size of 600 bpwere used for H3K9me3 andH3K36me3, and awin-

dow size of 200 bp and a gap size of 200 bp were used for H3K4me3.
Network models

Graphs for network models were created and plotted using the software

Gephi (http://gephi.org). Nodes were manually prearranged, and their

layout was optimized using the Fruchterman-Reingold algorithm (40),

which adjusts node positions based on forces that act between nodes ac-

cording to the respective correlation strength.
Sample preparation for histone ChIP-seq

ESCs and neural progenitor cells from 129P2/Ola mice were cultured and

differentiated as published in Teif et al. (41). ChIP-seq experiments and

http://gephi.org
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mapping of reads to the mm9 assembly of the mouse genome was con-

ducted as described in M€uller-Ott et al. (22). In brief, 106 cells were

cross linked with 1% PFA and cell nuclei were prepared. Chromatin

was sheared by sonication to mononucleosomal fragments. ChIP was

carried out with antibodies (Abcam, Cambridge, UK) against H3K4me1

(ab8895), H3K4me3 (ab8580), H3K9me3 (ab8898), H3K27ac (ab4729),

H3K27me3 (ab6002), H3K36me3 (ab9050), or with a nonspecific IgG anti-

body (RA073 or PP500P, ACRIS, Herford, Germany) (Table S5). Libraries

were prepared according to Illumina standard protocols with external barc-

odes and were sequenced with 51 bp single-end reads on an Illumina HiSeq

2000 system (Illumina, San Diego, CA). After sequencing, cluster imaging

and base calling were conducted with the Illumina pipeline. A quantity of

20–30 Mio reads were obtained for each sample. Reads were uniquely map-

ped without mismatches to the mm9 mouse genome using the software

Bowtie. For RNA-seq, cells were harvested and long RNAs were isolated

with the RNeasy Mini Kit (Qiagen, Hilden, Germany), DNA was digested

by DNase I (Promega, Madison, WI) for 30 min at 37�C, and libraries were
prepared using the Encore Complete RNA-Seq Library Systems (NuGEN,

Manchester, UK).
Data and software

ChIP-seq data are available in the GEO database with the accession number

GSE61874. An executable Java program, including a test data set and an R

script for statistical testing of the difference between two correlation func-

tions, is available in the Supporting Material and can be downloaded at

http://malone.bioquant.uni-heidelberg.de/software/mcore.
RESULTS

Comparison of MCORE to other sequencing
analysis workflows

The MCORE workflow in comparison to the currently most
common approaches for deep sequencing analysis is illus-
trated in Figs. 1 and S2 A. First, all types of data sets
were transformed into normalized read occupancy profiles.
Among others, this normalization step takes into account
the propensity of a DNA fragment to be ligated, amplified,
sequenced, and mapped. To correct for these multiplicative
biases, the sample read density was divided by the input
read density for IP and Hi-C experiments or by the sum
of converted and unconverted read densities for BS-seq.
We expect that Hi-C data that have already been normalized
with other methods (42,43) can be used for MCORE
without further correction. IP experiments such as ChIP-
seq yielded significant background correlation due to
nonspecific binding of DNA and proteins to beads or
bead-antibody complexes (44). Accordingly, these data
sets were further corrected by subtraction of a weighted
control IP signal obtained from an IP with nonspecific anti-
bodies (Fig. S2 B). The weighting factor reflects the contri-
bution of nonspecifically precipitated DNA in each sample
and removes the correlation between specific IP and control
IP (see Materials and Methods). As expected, the contribu-
tion of nonspecific signal depended on the quality of the
antibody and on the enrichment levels of the specific IP-sig-
nal. H3K9me3 ChIP-seq data, for example, were affected
more strongly by this correction than H3K4me3 ChIP-seq
data (Fig. S2 C), because H3K4me3 domains were more
distinct and exhibited larger enrichment levels than
H3K9me3 domains. Normalized occupancy profiles can
be exported and be used for other downstream analysis
methods.

Peak calling or dynamic network models use occupancy
profiles from mapped reads to define peaks or chromatin
states based on local enrichments (Fig. 1 A). In contrast,
MCORE computes correlation functions from the seq-
uencing read occupancy without binarizing the data. To
this end, normalized occupancy profiles from two different
data sets were shifted with respect to each other along the
genomic coordinate, and the normalized Pearson correlation
coefficient for each shifting distance Dx was calculated and
analyzed (Materials and Methods). In contrast to rank corre-
lations, the Pearson correlation coefficient accounts for the
enrichment values within the normalized occupancy profile
and therefore preserves the biologically relevant informa-
tion (Fig. S3). We computed three types of correlation func-
tions with different biological meaning: 1) the correlation
function between two replicates, yielding the domain topol-
ogy for a chromatin feature (Fig. 1 B); 2) the correlation
function between the same feature in two different cell
types, providing information on the positional conservation
of a given chromatin mark across cell types (Fig. 1 C); and
3) the correlation function between two different features in
the same cell type, reflecting their genomewide positional
relationship such as colocalization or shifted localization
(Fig. 1 C). The use of at least two independent data sets
(either two replicates or two samples interrogating different
features or cell types, see Eq. 4) for the calculation of each
type of correlation function suppresses spurious noise that is
uncorrelated between independent experiments and does
not, therefore, contribute to the correlation.

To compare colocalization values among differently
distributedmarks, we normalized cross-correlation functions
with respect to their replicate correlation (Materials and
Methods, Eq. 5). This step was required because broadly
distributed marks tended to yield smaller cross- and replicate
correlation coefficients thanmarks forming narrow and well-
positioned domains. As illustrated in Fig. 1C, positive corre-
lation indicated colocalization at a given shift distance,
whereas negative correlation reflected mutually exclusive
modification or binding. Each decay length and its contribu-
tion to the correlation function encoded a domain size and its
abundance, whereas superimposed oscillations reflected
nucleosome spacing (31,41). Where necessary, the correla-
tion function can be used as a starting point to identify indi-
vidual regions of interest as described below.

MCORE is complementary to peak calling, which gener-
ally aims to identify enriched regions without larger gaps.
As the probability to find modified regions without spurious
gaps decreases with size, broad regions are prone to get lost
or fragmented in such analyses. This phenomenon is more
or less pronounced depending on the settings and the
Biophysical Journal 112, 473–490, February 7, 2017 477
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FIGURE 1 MCORE can identify and compare patterns in deep sequencing data sets. (A) MCORE is suited for the analysis of deep sequencing data from

various methods. Initially, mapped reads are used to compute occupancy profiles of two samples (black, blue or gray). In the case of MCORE, the profiles are

subsequently normalized using the input sample and, if applicable, the control sample. In contrast to other methods like peak calling, hidden Markov models

(HMM) or dynamic Bayesian networks (DBN), which use control and IP samples for the detection of enriched regions, MCORE does not score enriched

regions. Rather, the correlation functions of normalized occupancy profiles shifted with respect to each other are computed, which contain information about

chromatin patterns as illustrated in (B) and (C) and Fig. S1. To this end, it uses all sequencing reads without filtering and avoids any assumptions about

the enrichment pattern. (B) Correlation functions between replicates for the same chromatin feature contain information about its domain topology.

Whereas the correlation coefficient at shift distance zero quantifies the reproducibility of the experiment, the shape of the function reflects the distribution

of the feature along the genomic coordinate. Continuous domains lead to a steep decay at the shift distance that coincides with half the domain size l (top),

whereas broad domains containing small highly enriched regions yield multiple decay lengths li (center). Arrays of equally spaced domains cause an

oscillating contribution in the correlation function (bottom). Mixtures of domains with different topology yield a superposition of the respective correlation

functions. (C) Correlation functions between two different chromatin features reflect their spatial relationship. Colocalizing features yield monotonously

decaying functions (top) that resemble those between replicates discussed in the previous panel. Correlation functions for features that are shifted with respect

to each other exhibit a local maximum at the shift distance d (center). Mutually exclusive features are recognized by negative correlation amplitudes (bottom).

Features that do not exhibit any particular spatial relationship with respect to each other yield no correlation for any shift distance. To see this figure in color,

go online.
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algorithm used as shown for H3K9me3 in Fig. S4 B. Further,
it is often challenging to identify and remove false-positive/
negative peaks that are caused by the inherent properties of
sequencing data sets like noise, artificial overrepresentation
of particular genomic regions (45,46), or insufficient read
coverage (15). An example for H3K36me3 is shown in
Fig. S4 C. MCORE retrieves information about patterns
upstream of peak calling analyses and is relatively robust to-
ward uncertainties at individual loci because correlation
functions are calculated from the entire collection of
sequencing reads in a large genomic region (see Figs. S5
and S6 for the influence of read coverage).
Interpretation and quantification of correlation
functions

We quantified the information contained in correlation func-
tions by first analyzing their decay spectrum in a model-in-
dependent manner and by subsequently fitting a generic
model function (29) as described in the Materials and
Methods. This is illustrated for a simulated data set in
Fig. S7. As a first step, inflection points (in logarithmic rep-
resentation) were numerically determined, yielding the
decay lengths that are present in the correlation function.
Depending on the type of function these decay lengths li
represent domain sizes or separation distances (Fig. 1 C).
Next, the Gardner transformation was computed, which ex-
hibited peaks at the characteristic decay lengths (37). Both
approaches were independent of input parameters or model
assumptions. Finally, we fitted the correlation function to
quantitatively describe the domain size spectrum (Materials
and Methods). Because decay lengths and nucleosome
repeat length follow from the change of the correlation co-
efficient with shift distance, these parameters are indepen-
dent of the absolute correlation amplitude, which is
beneficial for the analysis of data sets that are not properly
normalized, e.g., due to low sequencing depth or lack of
suitable control samples.

Correlation functions can be compared to each other
based on errors obtained from Fisher transformation or
bootstrapping (Fig. S8, Materials and Methods). These
errors reflect variations of the correlation coefficient among
different positions within the genomic region of interest. If
more than two replicates were available, replicate correla-
tion functions calculated for each combination of indepen-
dent samples were combined to account for differences
among experiments (Fig. S8). We found these errors most
meaningful because the variability among replicates can
typically not be neglected and should be used as a reference
when comparing different correlation functions to each
other. The shape and the amplitudes of correlation functions
were well reproducible when normalized according to the
workflow described above. This was also true when
comparing our samples with published histone modification
ChIP-seq samples from other labs (Figs. S8 C and S9 A).
In summary, MCORE yields compact genomewide repre-
sentations of chromatin features in the form of correlation
functions that can be quantitatively evaluated and compared
to each other. It can be used to 1) determine domain
topologies (Fig. 1 B); 2) assess positional relationships
(Fig. 1 C); 3) test the reproducibility of experiments; or
4) assess variations caused by changes in experimental con-
ditions, e.g., the use of antibodies from different suppliers
(Fig. S10). In contrast to the Pearson correlation coefficient
between two data sets alone, the normalized correlation
function provides insight into the similarity of the data
sets on a broad range of length scales. Thus, MCORE can
detect changes in domain size, amplitude, or relative
genomic position and can be used to track the reorganiza-
tion of the epigenome among different cell types as shown
below.
Domain structure and nucleosome pattern of
modified regions in ESCs and NCs

We used replicate correlation functions to dissect the domain
structures and nucleosome patterns in ESCs and NCs
throughout the genome (Figs. 2, A and B, and S11; Tables
S3 and S4). These quantities reflect the activity of the cellular
machinery that shapes the chromatin landscape and thereby
regulates chromatin function. Most features studied here,
such as H3K9me3, displayed complex domain size distribu-
tions with multiple characteristic decay lengths (Fig. 2, A
and B). An exception was H3K4me3, which formed almost
exclusively distinct peaks of roughly 1900 bp or 9–10 nucle-
osomes in size in both ESCs and NCs in agreement with pub-
lished data (47). For H3K36me3, we found a typical domain
size of 24–30 kb, which is of the same order of magnitude as
the average gene length in the mouse genome (according to
NCBI Build 37, mm9). The nucleosome repeat length varied
among domains carrying different histone modifications,
with 218 bp for H3K27me3 in NCs and 182 bp for
H3K9me3 and H3K36me3 in NCs (Tables S3 and S4). This
observation suggests that nucleosome spacing is differen-
tially regulated and linked to the chromatin state, consistent
with previous reports (31,48).

The initial decay of most replicate correlation functions is
caused by the reduced probability to find the same modifica-
tion at the neighboring nucleosome and is therefore associ-
ated with a domain size of a single nucleosome. Notably, a
prerequisite for this interpretation is that the occupancy pro-
file is properly normalized and not heavily undersampled,
which is validated for representative profiles in Figs. S5
and S6. Accordingly, homogenous domains that primarily
contain equally modified nucleosomes produce a weaker
initial decay than domains that contain a mixture of
modified and nonmodified or differently modified nucleo-
somes. Whereas the subtle initial decay for H3K4me3 in
ESCs and NCs (Fig. 2, A and B; Tables S3 and S4) is indic-
ative of homogenous domains, the pronounced decay for
Biophysical Journal 112, 473–490, February 7, 2017 479
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FIGURE 2 Quantification of domain sizes for

different histone marks. (A) Correlation functions

for replicates in ESCs. Correlation functions calcu-

lated between replicates for chromosome 1 (black)

and their fit functions (red or gray) with character-

istic domain sizes obtained from the fit (vertical

dotted lines) are shown. (Gray regions) Maximum

variation among chromosomes. Fit residuals are

plotted above the correlation curves. Domain sizes

and abundances calculated from the respective fit pa-

rameters are shown below the correlation curves. (B)

Same as in (A) for NCs. (C) MCORE identified broad

H3K9me3 domains spanning, on average, 128 kb

and 7.6 Mb in NCs, which were absent in ESCs.

To annotate the genomic positions of these domains,

normalized occupancy values in a sliding window of

128 kb, which corresponded to the smaller domain

size, were evaluated. An example of a domain that

became broader in NCs is shown (#1 and #2 denote

replicates). For clarity, the occupancy profiles were

smoothed with 0.2 times the window size (smooth).

For window size 7.6 Mb, see Fig. S13. To see this

figure in color, go online.
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H3K9me3 in NCs (Fig. 2 B; Table S4) suggests that this
modification forms discontinuous domains with gaps. This
is corroborated by the absence of isolated nucleosomes
with high H3K9me3 enrichment levels outside broader do-
mains (Fig. S12), which could also be responsible for a steep
480 Biophysical Journal 112, 473–490, February 7, 2017
decay in the correlation function because such nucleosomes
would have unmethylated neighbors.

In summary, these results reveal the link between
different histone modifications and their domain sizes and
frequency distributions. Based on these parameters, an
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assignment to specific genomic loci can be made, e.g., by
evaluating the normalized occupancy profiles with a sliding
window corresponding to a domain size of interest. This
procedure is illustrated in Figs. 2 C and S13 for broad
H3K9me3 domains, which, according to MCORE, prevailed
in NCs.
Changes in chromatin patterns during stem cell
differentiation

To identify changes of chromatin features during stem
cell differentiation, we conducted a comparative MCORE
analysis of more than 60 deep sequencing data sets from
ChIP-seq (histone modifications: H3K4me1, H3K4me3,
H3K9me3, H3K27ac, H3K27me3, H3K36me3, binding
sites of RNA polymerase II (RNAP II), and transcription
factors TAF3, Oct4, and Otx2), BS-seq, RNA-seq, Hi-C,
and RNAP II ChIA-PET experiments in ESCs and NCs
(Figs. 2, 3, and S14–S17; Tables S2 and S5). Normalized
correlation amplitudes at zero shift distance were assembled
into a matrix (Fig. 3 A, red/blue), reflecting colocalization or
mutually exclusive localization of different features. In both
cell types, we found more colocalizations than mutual ex-
clusions, which suggests that the set of chromatin features
analyzed here tends to localize to the same part of the
genome. In general, mutual exclusions were weaker than
colocalizations as judged by the absolute values of the
respective normalized correlation coefficients.

In ESCs, the strongest colocalizations were found among
features related to actively transcribed genes (H3K4me1,
H3K4me3, H3K27ac, H3K36me3, RNAP II, and RNAP II
ChIA-PET). Notably, H3K36me3, which is known to be
associated with active genes, also colocalized with
H3K9me3/H3K27me3, which are traditionally considered
heterochromatin marks. This might reflect 1) the presence
of repressed genes not devoid of H3K36me3 (49), 2) the
occurrence of H3K9me3 and H3K27me3 at active genes
(47), and/or 3) the presence of H3K36me3 domains outside
of coding genes. Mutual exclusion was found between
RNAP II and the repressive marks H3K27me3 and 5mC
(but not H3K9me3) in ESCs. Furthermore, interchromo-
somal contact sites were depleted around H3K27me3 in
ESCs, indicating that H3K27me3 domains localized prefer-
entially inside chromosome territories.

In NCs, colocalization among features associated with
active chromatin was conserved and tended to become
stronger (Fig. 3 A). Most activating modifications retained
their domain size structures and genomic positions on a
global level (Fig. S15). In contrast, H3K9me3 and
H3K27me3 redistributed during differentiation in a way
that their colocalization with each other, with 5mC and
with some of the activating marks like H3K4me1, increased
(Figs. 3, A and D, and S16). In particular, the following
changes are noteworthy: 1) Both H3K9me3 and
H3K27me3 formed broader domains in NCs compared to
ESCs, which led to a stretched decay in correlation func-
tions for NCs compared to the steeper decays in correlation
functions for ESCs (Figs. 2, A and B, and 3 B). 2) The
normalized correlation of H3K9me3 between ESCs and
NCs decreased compared to the normalized correlation be-
tween replicates from the same cell type (Fig. 3 B). The
same tendency was observed for H3K27me3. These differ-
ences suggest partial relocation of H3K9me3/H3K27me3
during differentiation. Otherwise correlation functions be-
tween ESCs and NCs would resemble the correlation func-
tion calculated for the replicates from the same cell type,
and all curves in each panel would essentially be identical.
3) The normalized correlation between H3K9me3 and
H3K27me3 increased in NCs (Fig. 3 C), which is indicative
of stronger colocalization of both marks in NCs. 4) Correla-
tion functions for 5mC in ESCs, NCs, and between both cell
types were similar (Fig. S15). Thus, global changes in the
genomewide 5mC pattern were minor, consistent with
previous findings (47). 5) The normalized correlation
between H3K27me3 and 5mC was higher in NCs com-
pared to ESCs (Figs. 3 A and S17 A), suggesting relocaliza-
tion of H3K27me3 to 5mC domains. Normalized correlation
between H3K9me3 and 5mC increased for large shift
distances in NCs, implying that extended H3K9me3 do-
mains formed in the vicinity of preexisting 5mC sites
(Fig. S17 A). 6) Substantial mutual exclusion was found be-
tween H3K9me3 and interchromosomal contacts in NCs but
not in ESCs, indicating that H3K9me3 was relocalized to
the interior part of chromosome territories (Fig. 3 C).
H3K27me3 resided preferentially inside chromosome terri-
tories already in ESCs and did not change its position in
NCs (Fig. 3 C).
Differential relationships among chromatin
features in ESCs and NCs

Next, we determined the characteristic genomic separation
distance for each pair of features (Fig. 3 A, green color-cod-
ing). Whereas correlation functions for colocalizing features
tend to decrease monotonously, correlation functions for
shifted features exhibit local maxima at their characteristic
separation distance (Fig. 1 C). Correlation functions for fea-
tures that colocalize at some regions in the genome and are
shifted with respect to each other at other places exhibit an
initial decay that is followed by local maxima (Fig. 3, C
andD). This type of information is lost in evaluation schemes
that exclusively assess overlap (Fig. 3 E). For simple cases,
such as H3K4me3 and H3K36me3 that localize side by
side at promoters and bodies of active genes (Fig. S4), similar
information is obtained by determining distances between
adjacent peaks across data sets (compare Fig. 3, D and F).

Examples for pairs of features that are shifted with respect
to each other in ESCs but overlap and colocalize in NCs are
H3K4me1-H3K9me3 (Fig. 3, A and D), H3K4me3-
H3K27me3, and H3K9me3-H3K27ac (Fig. 3 A). These
Biophysical Journal 112, 473–490, February 7, 2017 481
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FIGURE 3 MCORE reveals genomewide rela-

tionships between chromatin features. (A) Colocal-

ization (top, red/blue) and separation distance (shift

distance for the largest local maximum, bottom,

green) between pairs of different features in ESCs

(left) and NCs (right) are shown. (Stars) Correla-

tion functions for which the local maximum is

also the global maximum (Hi-C trans, Hi-C

interchromosomal contacts; RNA, RNA-seq;

RNAP II-ChIA, RNAP II ChIA-PET). (B) Correla-

tion functions for replicates of H3K9me3,

H3K27me3, and interchromosomal contacts

(Hi-C trans) in ESCs (blue) and NCs (black)

show the spatial extension of these features.

Average cross-correlation functions (red) between

ESCs and NCs quantify the colocalization of a

given feature across cell types. Averages were

calculated from the four possible combinations of

the two replicates for each sample (Materials and

Methods). Error bars, mean5 SE. (C) Cross corre-

lations between H3K9me3 and H3K27me3 (top) or

H3K9me3/H3K27me3 and interchromosomal con-

tact sites (Hi-C trans, center/bottom) in ESCs and

NCs. Repressive domains colocalize in NCs (top)

and have a tendency to be depleted for interchro-

mosomal contacts (bottom). Error bars, mean 5

SE. (D) Cross correlations between H3K4me3

and H3K27ac (top) indicate colocalization of

both marks in small domains, whereas cross corre-

lations of H3K4me3 and H3K36me3 (center)

reveal a relative displacement of roughly 5 kb be-

tween these two marks. Cross correlations between

H3K4me1 and H3K9me3 (bottom) show that both

marks are more strongly colocalized in NCs than

in ESCs. The broad local maximum around 100

kb shift distance in ESCs suggests a separation of

H3K4me1 from broad H3K9me3 domains. Error

bars, mean 5 SE. (E) Peak calling in NCs as

readout for colocalization. (Red) Peaks called by

MACS for H3K4me3; (blue) peaks called by

SICER for H3K36me3 or by MACS for

H3K27ac. The numbers of (overlapping) peaks

are indicated. (F) Distribution of distances between

called peaks. Distances were calculated from the

center of the H3K4me3 peak to the center of the

nearest peak in the second data set (H3K27ac or

H3K36me3).
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changes are consistent with the global reorganization of
H3K9me3 and H3K27me3 in NCs described above.
Network models for relationships among
chromatin features on multiple scales

The cross-correlation functions introduced above represent
the scale-dependent relationships between pairs of chromatin
features. Accordingly, we used these values to construct
482 Biophysical Journal 112, 473–490, February 7, 2017
network models that reflect the associations among all
features assessed here for a particular genomic distance
(Fig. 4). Features were arranged based on their associations
at zero shift distance, with positively correlated features posi-
tioned close to each other (Materials and Methods). As
described above, activating histone modifications such as
H3K4me1, H3K4me3, and H3K27ac colocalized with
RNAP II and RNAP II ChIA-PET sites in both ESCs and
NCs. Repressive marks including H3K9me3, H3K27me3,
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FIGURE 4 Network models for scale-dependent relationships among chromatin features. (A) Network models illustrating the relationships among

different chromatin features in ESCs on different scales (blue and red in the color version of this figure denote positive and negative correlation, respectively).

Features were grouped according to their correlation at zero shift distance (left), yielding a cluster of features associated with active transcription and a cluster

of marks related to gene silencing, whereas H3K36me3 colocalizes with members of both groups. The correlations among features on adjacent nucleosomes

(200 bp shift distance) differ from the correlations among features at the same nucleosome (0 bp shift distance), indicating that only some features form

continuous domains that extend beyond a single nucleosome. For the even larger shift distance of roughly 10 nucleosomes (2000 bp), only a few long-range

correlations remain, which either reflect large domains of colocalizing features or features that are shifted with respect to each other. The latter two possi-

bilities can be distinguished based on the shape of the correlation function (Fig. 1 C). (B) Same as in (A) but for NCs. (C) Network models illustrating chang-

ing relationships among different chromatin features in ESCs and NCs. In the color version of this figure, the difference NC-ESC is depicted in blue if

correlations became stronger in NCs and in red if correlations became weaker in NCs. To see this figure in color, go online.
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and 5mCwere also positively associated with each other, with
stronger correlations in NCs than in ESCs. This observation
suggests that in NCs a larger fraction of the genome is hetero-
chromatic. H3K36me3 exhibited positive correlations with
both activating and repressive marks, indicating partial over-
lap of the respective domains. Associations among different
features changed in a characteristicmanner with genomic dis-
tance, reflecting themechanisms that establish chromatin pat-
terns on different scales. Activating features remained
associated with the adjacent nucleosome (200 bp shift),
Biophysical Journal 112, 473–490, February 7, 2017 483
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indicative of chromatin domains that extend beyond a single
nucleosome. In contrast, the cross correlation among repres-
sive marks at neighboring nucleosomes decreased consider-
ably compared to their correlation at the same nucleosome.
This points to the presence of nucleosomes (without an
equally modified neighbor) that either carry at least two
repressive marks simultaneously, display a transition between
two different repressive marks over time, or stably carry
different repressive marks in different cells. All of these sce-
narios would produce positive correlation in the ensemble
average. At a shift distance of ~10 nucleosomes (2000 bp),
most associations among activating histone modifications
were lost, reflecting the relatively limited spatial extension
of the respective domains (Tables S3 and S4).
Reorganization of heterochromatin components

To further investigate the changes in heterochromatin organi-
zation during differentiation of ESCs into NCs inferred from
the MCORE analysis above, we dissected the core part of
the network around H3K9me3. To this end, we compared
the distributions of the H3K9me3 mark, the histone methyl-
transferase SUV39H1 that sets thismark in pericentric hetero-
chromatin, and the heterochromatin protein 1 isoforms HP1a
and HP1b to each other. Both SUV39H1 and HP1 contain
chromodomains that recognize H3K9me3, but the contribu-
tion of these interactions to their genomewide binding profiles
has not been studied comprehensively. First, we asked if the
two HP1 isoforms displayed cell type-specific chromatin
interaction patterns. We found that the genomic distributions
of HP1a and HP1b were different from each other in both
ESCs (Fig. 5, A–C) and NCs (Fig. 5, D–F). In ESCs, HP1b
formed broader domains than HP1a (Fig. 5 A) that were less
correlated with H3K9me3 (Fig. 5 B) but rather overlapped
with H3K36me3 (Fig. 5 C). This finding supports recent
work, which showed that HP1b but not HP1a is enriched in
exons and essential for proper differentiation andmaintenance
of pluripotency in ESCs (50). The nuclear distribution of
HP1b in ESCs might be related to its function in splicing
(51). InNCs, HP1a andHP1b displayedmoderate differences
in their domain structure (Fig. 5, D and G), with a stronger
preference of HP1a for broad domains. In contrast to ESCs,
both isoforms strongly colocalized with H3K9me3 in NCs
(Fig. 5 E), in line with their well-established role as hetero-
chromatin components in differentiated cells (M€uller-Ott
et al. (22) and references therein). Colocalization with
H3K36me3 was also observed (Fig. 5 F), consistent with the
overlap between H3K9me3 and H3K36me3 domains in NCs
found above. Next, we focused on the composition of
H3K9me3 domains in NCs. Whereas H3K9me3 formed
both broad and intermediately sized domains, SUV39H1 did
not form intermediate domains but rather broad domains con-
taining gaps (Fig. 5,D andG), as suggested by the fast decay of
its replicate correlation function (Fig. 5 D, red). Consistently,
colocalization amongHP1a/b, SUV39H1, andH3K9me3was
484 Biophysical Journal 112, 473–490, February 7, 2017
not found in intermediate but rather in broad domains
(Fig. 5 E). These findings point to the presence of
SUV39H1-independent H3K9me3 domains with intermedi-
ate size in NCs, which have also been described in ESCs
(52), indicating that H3K9me3 is not sufficient for stably
recruiting SUV39H1 to chromatin. This is in line with a
looping model in which well-separated high-affinity binding
sites (nucleation sites), which reside within broad heterochro-
matic regions, recruit SUV39H1 to establish and maintain
H3K9me3 (Fig. 5 H).
Model for changes of chromatin features during
differentiation

TheMCORE results on domain size distributions, colocaliza-
tions, and separation distances (Figs. 2–4) lead us to propose
themodel for the reorganization of chromatin during differen-
tiation of ESCs into NCs depicted in Fig. 6. H3K9me3
andH3K27me3domains became larger andmore strongly co-
localized with sites of preexisting 5mC during the transition
from ESCs to NCs (Figs. 3, B and C, and S17 A). This rear-
rangement leads to several alterations in the relationships be-
tween H3K9me3/H3K27me3/5mC and other chromatin
features in NCs: 1) H3K27me3 and H3K9me3 colocalized
stronger with active marks including H3K4me1, H3K4me3,
H3K27ac, and RNAP II as well as H3K36me3 (Figs. 3 A
and 4). 2) 5mC colocalized somewhat more strongly with
H3K36me3 (Figs. 3 A and S17 A). 3) Whereas 5mC and
H3K27me3 were already depleted from the surface of the
chromosome territory in ESCs (Figs. 3 C and S17 B),
H3K9me3 moved into the interior of the territory in NCs
(Fig. 3 C). The positive correlations between H3K4me1-
H3K27me3 and H3K4me1-H3K9me3 remained stronger in
NCs than in ESCs on larger genomic scales up to 10 nucleo-
somes (Figs. 3D, 4C, andS16), indicating that they are caused
by NC-specific broad domains. In summary, these findings
suggest that the main chromatin transition during differentia-
tion from ESCs into NCs is the rearrangement of H3K9me3/
H3K27me3 domains, which in NCs extend beyond repressive
heterochromatin and overlap at least to some extentwith chro-
matin regions that carry activating histone marks.
DISCUSSION

Quantitative descriptions of cell-type-specific chromatin
states are important for the mechanistic understanding of
all processes that require access to the genetic information.
While the effects of soluble enzymes can be represented by
simple rate equations, the polymeric nature of chromatin in-
troduces a spatial relationship among nucleosome states.
Thus, nucleosomes are influenced by the adjacent chromatin
segments and patterns that can form along the genomic coor-
dinate. These patterns are present on different length scales
and represent an extra layer of complexity, which is an essen-
tial part of the regulatory networks that control genome
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FIGURE 5 Interplay among H3K9me3, SUV39H1, and HP1. (A) Replicate correlation functions of HP1a (blue or light gray), HP1b (black), and

H3K9me3 (green or dark gray) in ESCs. (B) Cross-correlation functions of HP1a (blue or gray) or HP1b (black) with H3K9me3 in ESCs. (C) Cross-cor-

relation functions of HP1a (blue or gray) or HP1b (black) with H3K36me3 in ESCs. (D) Same as in (A) but for NPCs and including SUV39H1. H3K9me3

and HP1a/b exhibit small, intermediate, and broad domains. The small domain size of one nucleosome is present in the correlation functions for all marks,

suggesting that domains consist of enriched sites and gaps as explained in the text. SUV39H1 does not form intermediately sized domains. (E) Same as in (B)

but for NCs and including SUV39H1. SUV39H1, HP1a, HP1b, and H3K9me3 strongly colocalized. Intermediate domains are not present in the cross-cor-

relation function between SUV39H1and H3K9me3, indicating that both features only colocalize in short and broad domains. In contrast, HP1a and HP1b

essentially follow the H3K9me3 distribution, indicating that they do not distinguish between differently sized H3K9me3 domains. (F) Same as in (C) but for

NCs. (G) Domain size distribution for correlation functions in (D) and (E). (H) Schematic illustration of a nucleation-and-looping mechanism for the for-

mation of SUV39H1-dependent H3K9me3 domains, which is consistent with the MCORE results for NPCs. To see this figure in color, go online.
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FIGURE 6 Alterations of chromatin features

during differentiation of ESCs into NCs. A model

for the reorganization of chromatin domains during

differentiation from ESCs to NCs is shown, which

is based on the MCORE analysis of the data sets

used in this study. Active domains mostly retained

their organization, with H3K4me1 being partly

separated from the smaller H3K4me3/H3K27ac

domains in both cell types. The overlap between

those marks and H3K36me3 increased in NCs,

which might be due to the activation of genes over-

lapping with H3K4me1/3 or H3K27ac. Domains

enriched for H3K9me3 and H3K27me3 became

extended at sites of 5mC and were preferentially

buried inside chromosome territories. The newly

established H3K9me3/H3K27me3 domains in

NCs appeared discontinuous, i.e., contained many

modified nucleosomes without an equally modified

neighbor. Further, they exhibited increased overlap

with activating marks such as H3K4me1 and

H3K4me3, which suggests that they do not exclu-

sively contain heterochromatin but rather enclose

both active and repressive chromatin domains. To

see this figure in color, go online.
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functions. For example, repressive histone modifications
form broad domains that are relatively independent from
the underlying DNA sequence and can be transmitted
through at least several cell divisions (22,53–55). Further-
more, chromosomes fold into topological domains that deter-
mine the contact frequencies between genomic loci and the
proteins they are decorated with (56), thereby creating
three-dimensional structural patterns that might be relevant
for long-range gene regulation. Elucidating the mechanistic
basis of these phenomena and the functional relationships
among them requires techniques that can identify, quantitate,
and compare different patterns along the genome.
Global analysis of deep sequencing data by
correlation functions

The analysis of deep sequencing data on the level of individ-
ual genomic positions is complicated by noise, bias, and
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undersampling (15–17). It is often not straightforward to
choose a threshold value for classifying enriched regions
because low values lead to false-positive peaks and high
values lead to false-negative results. Consequently, identi-
fying differences in the chromatin domain landscape be-
tween samples is currently fraught with difficulties, which
is evident from a comparison of 14 different software tools
for differential ChIP-seq analysis that yield different results
(57). These problems are especially detrimental for the anal-
ysis of broad regions with low enrichment levels that are
common to heterochromatin.

The MCORE method introduced here uses correlation
functions to find and quantify chromatin patterns. It com-
putes Pearson correlation coefficients as underlying metrics,
which is a convenient measure used for data comparison
and statistical inference in many fields including deep
sequencing analysis (18,30,31,58). When calculating corre-
lation functions, MCORE implicitly combines multiple
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genomic regions to gain a correlation coefficient for each
shift distance, yielding statistical robustness from a large
number of reads. In this manner MCORE can quickly
retrieve information on the spatial distribution of chromatin
features on all length scales, while avoiding assumptions
or model-dependent parameter settings like significance
thresholds. In contrast to aggregate plots (59–61) MCORE
does not rely on any a priori knowledge about annotated
genomic elements. Compared to peak calling (15), MCORE
has a relatively low sensitivity to undersampling. This might
be beneficial for the analysis of data sets that have low
complexity, e.g., due to limitations in input material as it
is the case for low input sequencing samples, or insufficient
sequencing depth, which seems to be the norm for broadly
distributed histone modifications (15). Domain abundances
obtained from data sets with different coverage values ex-
hibited somewhat larger changes than domain sizes. There-
fore, sufficient coverage should be ensured to interpret these
parameters, e.g., by applying MCORE to diluted data as
shown in Figs. S5 and S6.

A crucial step in the MCORE workflow is correction for
bias and background. Without this step, artificially overrep-
resented regions and nonspecific signals can induce similar-
ities between data sets that are unrelated to the chromatin
feature of interest. These phenomena are well known from
other deep sequencing analysis methods. Because different
artifacts affect the signal on different scales, their contribu-
tion and successful correction can better be assessed by mul-
tiscale methods than by techniques that operate on a single
scale. Nonspecific background leads to a characteristic
correlation spectrum whose removal can and should be vali-
dated using the proper controls. Based on a single correla-
tion coefficient between data sets, this task is more
difficult to accomplish. Occupancy profiles that have been
normalized according to the workflow presented here might
serve as a useful resource for other downstream analysis
methods.
Genomewide topology of chromatin domains

MCORE extends previous techniques that assess colocaliza-
tions of chromatin features based on correlation coefficients.
By evaluating entire correlation functions instead of single
correlation coefficients, the spatial extension of chromatin
patterns on multiple genomic scales is retrieved. With
this analysis, we found predominantly small domain sizes
of <2 kb for promoter/enhancer marks H3K4me1,
H3K4me3, H3K27ac, and RNAP II, intermediate domain
sizes of 20–30 kb for H3K36me3 that marks the whole
gene body including flanking regions, and domain sizes
up to several megabases for H3K9me3/H3K27me3. This
is consistent with the size of promoters, enhancers, and
active genes, and with the estimates for repressive domains
that were made based on visual inspection of selected
genomic regions (62).
The scale-dependent relationships determined by
MCORE for different histone modifications suggest that
there are three types of domain topologies: 1) Short do-
mains formed by activating marks are relatively homoge-
nously modified, which is reflected by a large probability
for finding the same or another activating modification at
the next nucleosome. Accordingly, correlation functions
for activating marks such as H3K4me3 displayed only a
moderate initial decay (Fig. 2). 2) H3K36me3 formed do-
mains of intermediate size that were 1–2 orders-of-magni-
tude broader than H3K4me3 domains. The stronger initial
decay (Fig. 2) suggests the presence of single nucleo-
somes without an equally modified neighbor, which is
consistent with the presence of more gaps in H3K36me3
domains as compared to H3K4me3 domains. 3) Especially
in NCs, replicate correlation functions for H3K9me3
or H3K27me3 displayed long-range correlations that
extended to shift distances of several megabases. Similar
scale-dependence was also seen for correlation functions
between H3K9me3 and H3K27me3 (Fig. 3 C), suggesting
that these domains are intermingled. The respective corre-
lation functions displayed a relatively fast decay at a shift
distance of one nucleosome (Figs. 2 and 3), indicating that
many modified nucleosomes within these broad domains
localize next to an unmodified or differently modified
one. Such a domain structure fits well to the experimental
observation of broad domains and low enrichment levels
in the cell ensemble. The experimentally determined
methylation levels that are <50% even for H3K9me3 in
pericentric heterochromatin (see M€uller-Ott et al. (22)
and references therein) are incompatible with large
genomic regions containing exclusively fully H3K9me3-
modified nucleosomes. Broad H3K9me3/H3K27me3 do-
mains with gaps are consistent with a model in which
methylation marks are stochastically propagated from
well-positioned nucleation sites via dynamic chromatin
looping (22,63).
Comparison of chromatin domains in ESCs
versus NCs

The comparative analysis of 11 different chromatin features
in ESCs and NCs conducted here shows that MCORE can
efficiently identify and compare chromatin domain patterns.
By integrating genomewide data sets with very different
readouts, MCORE is well suited to generate hypotheses
that can be further validated in downstream applications.

The positive correlations we found among activating
histone modifications (H3K4me1, H3K4me3, H3K27ac,
and H3K36me3), among repressive histone modifications
(H3K9me3, H3K27me3, and 5mC), and between
H3K36me3 and repressive marks are in qualitative agree-
ment with previous studies conducted with ESCs and
other cell types (62,64,65). Genomewide colocalization of
marks that were originally thought to affect transcription
Biophysical Journal 112, 473–490, February 7, 2017 487
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antagonistically might reflect the additional functions of
these marks that are unrelated to the regulation of gene
expression. For example, H3K9me3 is not restricted to het-
erochromatin but is also found at some active genes (47,66).
Furthermore, H3K9me3, H3K27me3, and H3K36me3 have
been linked to alternative splicing (51,67) and large por-
tions of H3K9me3 and H3K27me3 localize to intergenic
regions where they might serve completely different func-
tions (64). Because sequencing data reflect the average of
the cell population that was analyzed, positive correlations
might also arise from gene loci carrying different marks
during different cell cycle stages, alleles within the same
cell carrying different marks, or loci carrying different
marks in different cells. The finding that correlations were
generally smaller in ESCs than in NCs fits to the model
of plastic and hyperactive chromatin in stem cells, which
acquires distinct patterns only upon differentiation (68).
The fact that most 5mC regions persisted in ESCs and
NCs, were moderately depleted for interchromosomal con-
tacts in both cell types, and gained H3K9me3 in NCs, sug-
gests a model in which heterochromatic regions newly
established in NCs are preferentially buried within chromo-
some territories (Fig. 6). H3K27me3 domains behaved
similarly in both cell types, which fits very well to the pre-
viously reported localization of inactive domains such as
the Hox cluster inside chromosome territories in differenti-
ated cells (13,69–71). The observation that only a subset of
H3K9me3 domains is broad and enriched for SUV39H1
suggests that heterochromatin extension is not merely
caused by recruitment of trans-acting enzymes to preexist-
ing H3K9me3 but rather by site-specific recruitment of
methyltransferases to domains that are to be extended
during differentiation. Although further experiments are
required to fully understand the underlying molecular de-
tails of heterochromatin reorganization during differentia-
tion, these insights provide a starting point to uncover the
pathways that are responsible for establishing differently
sized heterochromatin domains with distinct molecular
composition.
CONCLUSION

The MCORE method introduced here enables the quantita-
tive retrieval and comparison of patterns and spatial rela-
tionships for different chromatin features from noisy data
sets. These features make MCORE complementary to
model-dependent approaches that assess the local read den-
sity at individual loci to find enriched regions. MCORE is
relatively fast and yields a coarse-grained comparison of
data sets without the requirement of user-defined input
parameters, providing an unbiased starting point for in-
depth analyses conducted downstream. We anticipate that
MCORE will aid in the design and validation of mechanistic
models for chromatin patterning and long-range gene
regulation.
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Figure S1 | Strategies to retrieve information about complex patterns. (A) Peak calling 
result for a complex domain structure involving different enrichment levels (MACS, standard 
settings mfold =10,30, pvalue = 1e-5). The pattern is reduced to regions that are compatible 
with the threshold and significance settings while others are ignored. (B) Correlation function 
(black dots) and multi-exponential fit according to Eq. 6 (red line) for the pattern in panel A. 
The correlation function yields the different length scales that are present in the pattern, 
including the width of highly enriched regions, the characteristic size of clusters formed by 
adjacent peaks, and the size of the entire enriched region. 
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Figure S2 | MCORE workflow and background correction. (A) Schematic representation 
of the MCORE workflow. (B) Fragmentation of total chromatin (black) containing a chromatin 
feature of interest (red) occurs with some bias and is frequently incomplete. As a result, only 
a fraction of chromatin (blue) is present in the input sample due to size selection during 
library preparation. Subsequent immunoprecipitation occurs in the presence of non-specific 
binding. The latter contribution can be assessed in a separate control reaction, e.g. by using 
an antibody that does not bind specifically to the antigen. Sequencing reads obtained from 
samples with the specific antibody A, the control C and the input I are used to calculate 
normalized occupancy profiles for the analysis of a given chromatin feature according to 
Eqs. 1-3. In brief, the read densities from the specific IP and from the control are divided by 
the input density (A / I and C / I, see Eq. 1) to account for multiplicative biases such as 
mappability or preferences in immunoprecipitation, ligation, amplification and sequencing. 
Next, the weighted control signal is subtracted from the specific antibody signal to remove 
additive bias caused by non-specific binding (Eqs. 2-3). Resulting profiles are used for 
calculating correlation functions (Eq. 4). (C) Correlation functions for the uncorrected (black) 
and corrected (blue) occupancies for control IP (IgG, top), H3K4me3 (center) and H3K9me3 
(bottom) ChIP-seq replicates in neural progenitor cells. Subtraction of the weighted control 
IP signal removes the background correlation and thus eliminates correlation between 
control IP signals (top). Normalization has little effect for H3K4me3, which displays distinct 
peaks with considerable enrichment (Fig. S4). In contrast, it causes a significant correction 
for H3K9me3, which forms broad domains with moderate enrichment levels.  
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Figure S3 | Statistics and Spearman correlation functions for representative ChIP-seq 
data. (A) Box plots (left), histograms (center) and percentiles (right) for normalized 
occupancy profiles from H3K4me3, H3K9me3 and H3K36me3 ChIP-seq experiments in 
ESCs. For box plots, the median is colored in red and the ends of the whiskers represent the 
1st and 99th percentile. Minimum and maximum occupancy values are listed in the 
histograms. The background comprises a large part of the data and its distribution is similar 
for all profiles (see box plots and histograms). (B) Pearson (left, green) and Spearman (right, 
green) correlation functions for the occupancy profiles analyzed in panel A. To assess the 
contribution of enriched regions to the different correlation functions we replaced occupancy 
values above the 90th (blue) or 99th (black) percentile with the average occupancy within the 
rest of the genome. Spearman correlation functions exhibited only slight changes upon 
removal of highly enriched regions and primarily reflected the structure of the background 
signal that was independent of the interrogated histone mark (compare top, center and 
bottom in the right column). In contrast, Pearson correlation functions reflected the 
properties of enriched regions, which carry the biological information, and changed their 
shape when these regions were omitted from the analysis. After removal of enriched regions 
(left column, blue), Pearson correlation functions were dominated by the background signal 
and resembled Spearman correlation functions (right column). The stronger background 
signal in Spearman correlation functions is due to the correction procedure that minimizes 
the background according to the Pearson metric (Eq. 3). 
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Figure S4 | Peak calling for representative ChIP-seq data. (A) Read distribution (black) 
for sample, control (IP with a non-specific antibody) and input, normalized occupancy 
(red/blue), and peaks (green) called by MACS (M) and SICER (S) for H3K4me3, H3K9me3 
and H3K36me3 ChIP-seq in NCs. Distinct H3K4me3 domains were reliably identified by 
both peak callers, results for H3K9me3 and H3K36me3 depended on the specific algorithm 
used (e.g. MACS and SICER). (B) Peak size distributions for clusters called by MACS and 
SICER for the ChIP-seq experiments in ESCs and NCs. Resulting cluster sizes differed 
between both methods. (C) Example of the read distribution (black) and normalized 
occupancy (red/blue) for H3K36me3 ChIP-seq in NCs, including input and control. The 
highlighted region contains an apparent enrichment in H3K36me3 that is identified as a 
peak. However, similar enrichment is present in the control IP, suggesting that the signal 
corresponds to non-specific background. 
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Figure S5 | Robustness of correlation functions towards undersampling. (A) Replicate 
correlation functions for ChIP-seq data sets of H3K4me3 in ESCs containing different 
numbers of reads. The red curve corresponds to the entire set of reads reported in this study 
(100%, corresponding to 30 million reads). The other functions reflect data sets that were 
diluted in silico by randomly selecting only a fraction of reads from the entire set. Correlation 
functions were normalized to the 100% curve at a shift distance of one nucleosome 
(according to the fit parameters c2 in Table S3) because correlation coefficients for smaller 
shift distances do not contain information about domain structures (see Fig. S6 for domain 
sizes obtained by fitting). (B) Same as in panel A but for H3K9me3. (C) Same as in panel A 
but for H3K36me3. (D) Quantification of the similarity of correlation functions for diluted data 
sets with respect to the curve for the undiluted data set based on the coefficient of 
determination (R2). Correlation functions for diluted data sets are similar to each other and to 
the result for the undiluted data set, with R2 > 0.9. Above 40% read density, which 
corresponds to 12 million reads, a plateau is reached for all modifications assessed here.  
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Figure S6 | Dependence of fit results on coverage. The correlation curves plotted in Fig. 
S5 were fitted with Eq. 6. Fit results for the domain sizes and the respective amplitudes are 
plotted versus coverage (domain numbers are indicated in the top panel). Gray regions 
show the variation of the fit results for dilution down to 50% of the reads. The most abundant 
domains, which represent the characteristic domain sizes for a given modification, were 
accurately quantified from diluted functions (top panels). Only lowly abundant large domains 
like the largest domain for H3K4me3 or H3K9me3 with abundance below 10% (see Table 
S3 for values) changed their apparent size when coverage was reduced. Due to their low 
abundance we did not interpret these domains. 
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Figure S7 | MCORE for simulated data sets. (A) Correlation functions (dotted lines) for 
randomly distributed fragments of different size exhibit a single decay length that can be 
retrieved by assessing inflection points (arrowheads), by fitting the model function in Eq. 7 
(solid lines) or by evaluating the decay spectrum obtained from the Gardner transformation 
shown below the curves. (B) Fit parameters obtained for the curves shown in panel A yield 
half domain sizes (green), whereas the positions of inflection points correspond to 0.7-times 
the domain sizes (black). (C) Correlation functions (dotted lines) for nucleosomal arrays 
(instead of continuous fragments as in panel A) display global decay lengths that correspond 
to array sizes. The decay lengths coincide with the largest inflection points depicted by the 
arrowheads. In addition, correlation functions exhibit an oscillatory contribution due to the 
nucleosomal pattern within the arrays. The nucleosome repeat length of 200 bp used for the 
simulation was retrieved by fitting with Eq. 7 (solid lines). (D) The array size in panel C is 
either obtained from the analysis of inflection points (black), the peaks of the decay 
spectrum or the fitted half domain sizes (green), with the same scaling found for continuous 
domains in panel B.   
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Figure S8 | Errors and statistical comparison of correlation functions. 
Panels A-F refer to H3K36me3 in ESCs. (A) Replicate correlation function (black) and its 
confidence interval (gray) obtained using the Fisher transformation (Materials and Methods). 
Due to the large sample size the confidence interval is smaller than 10-3 and within the line 
thickness. (B) Average (black) and confidence interval (gray) of correlation functions 
calculated for all autosomes (1-17) based on the H3K36me3 data sets generated in this 
study. (C) Average (black) and confidence interval (gray) of three replicate correlation 
functions calculated from three independent biological replicates (rep1 x rep2, rep1 x rep3, 
rep2 x rep3), yielding information on experimental reproducibility. The correlation function for 
ENCODE data for H3K36me3 in ESCs (red) is similar to the correlation function computed 
from the data sets generated in this study. The amplitude of the first domain that covers the 
length scale below 200 bp shift distance is different. This might be due to incomplete 
correction of background signal in the ENCODE data set that lacks a control IP reference, 
which should, however, not strongly affect the quantitation of domain sizes beyond the scale 
of a nucleosome. (D) Distribution of normalized occupancy values (Oi – <O>) that were used 
for calculating the correlation function in panel A. The distribution is relatively symmetric and 
unimodal. (E) Distribution of correlation coefficients obtained by bootstrapping for the 
correlation coefficient at zero shift distance. Each correlation coefficient was calculated after 
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resampling the occupancy profiles with replacement as described in the Materials and 
Methods section. Correlation coefficients are given relative to the mean value. The 95% 
confidence interval obtained by this approach is roughly 3-times larger than the estimate 
based on Fisher transformation (shown in red). (F) Correlation function from panel A with 
non-parametric bootstrap confidence intervals for each shift distance. (G) Based on 95% 
confidence intervals, the statistical significance of differences between correlation functions 
can be assessed. p-values for the difference of two functions at each shift distance are 
shown, which were calculated based on a t-test for each pair of correlation coefficients. The 
red dashed lines indicate a p-value of 0.05. Top: Comparison between H3K9me3 in ESCs 
and NCs. Correlation curves are shown in Fig. 3 B (top, black/blue). Bottom: Comparison 
between H3K27me3 in ESCs and NCs. Correlation functions are shown in Fig. 3 B (center, 
black/blue). 
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Figure S9 | MCORE for different H3K27ac data sets. (A) Correlation functions for 
H3K27ac data sets from this manuscript (‘Molitor’) and from the study of Creyghton et al. (1) 
(‘Creyghton’). Both data sets yielded similar results in the MCORE analysis. (B) H3K27ac 
enrichment at the enhancers identified by Creyghton et al. was found for all data sets 
assessed here. (C) The enhancers identified by Creyghton et al. were not the only genomic 
regions enriched for H3K27ac. 
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Figure S10 | Quality control of ChIP-seq data. (A) Replicate correlation functions from 
three ChIP-seq experiments of H3K36me3 in ESCs for all pairwise combinations, replicate 1 
and 2 (black), replicate 1 and 3 (red), replicate 2 and 3 (blue). The correlation functions 
show variations that reflect the biological reproducibility of the experiment. (B) Evaluation of 
two different antibodies used for ChIP-seq of H3K9ac in ESCs. Two ChIP-seq experiments 
were conducted with polyclonal antibodies from abcam (ab4441, replicate ab1 and ab2) or 
Active Motif (#39137, replicates am1 and am2). Replicate correlation functions of 
experiments with the same antibody showed significant correlation (ab1 and ab2, red line; 
am1 and am2 black line) with a difference in the amplitude that indicates a higher similarity 
and therefore a better reproducibility of ChIP-experiments conducted with the Abcam 
antibody. Cross-correlation functions calculated for data sets using different antibodies (blue 
curves for every combination of two replicates, ab1 x am1, ab1 x am2, ab2 x am1, ab2 x 
am2) yielded negative correlations. Thus, the two antibodies recognize different chromatin 
features and further validation is necessary to make conclusions on the H3K9ac distribution. 
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Figure S11 | Fitted correlation functions for H3K27me3. Correlation functions calculated 
between replicates on chromosome 1 (black) and fit functions according to Eq. 7 (red) with 
half domain sizes obtained from the fit (vertical dotted lines). Gray regions indicate maximum 
variation among chromosomes. Fit residuals for the correlation functions are shown below 
the curves. Fit parameters are summarized in Tables S3 and S4. 
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Figure S12 | Peak calling summary for H3K9me3. MACS and SICER were used to 
identify peaks of H3K9me3 in NCs. Parameters were used as indicated in the Material and 
Methods section. Numbers of peaks with different sizes are given. 100% refers to all of the 
peaks identified by MACS (3630 peaks containing 0.4% of all mapped reads) or SICER 
(35780 peaks containing 9.45% of all mapped reads). 
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Figure S13 | MCORE-directed annotation of chromatin features. MCORE identified 
broad H3K9me3 domains spanning on average 128 kb and 7.6 Mb in NCs. These domains 
were absent in ESCs, suggesting broadening of H3K9me3 domains during differentiation of 
ESCs into NCs (Fig. 2, A and B; Tables S3 and S4). (A) To identify broad regions enriched 
for H3K9me3 in NCs but to a lesser extent in ESCs, the coverage difference for normalized 
occupancy profiles in ESCs and NCs was calculated in a sliding window of 128 kb in size. A 
histogram for the obtained values is shown. The histogram is relatively symmetric and 
centered at zero, indicating that most genomic regions (that do not contain repetitive 
sequences) are not differentially modified with H3K9me3 in ESCs or NCs. The tails (blue 
rectangles) show that the largest coverage differences are found in regions that gain 
H3K9me3 in NCs. (B) The coverage difference along chromosome 1 (left, maximum and 
minimum values within 10 kb bins are plotted) and a zoom-in including the genomic region in 
Fig. 2 C (88.7 - 89.3 Mb, right) are shown. (C) To annotate the genomic positions of broad 
H3K9me3 domains, reads were counted and evaluated in a sliding window with the 
respective size. An example of a domain with ~7.6 Mb that became broader in NCs is 
shown. For clarity the occupancy profiles were smoothed with 0.2-times the window size. An 
example for window size 128 kb is shown in Fig. 2 C. 
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Figure S14 | MCORE for transcription factor binding. Co-localization of transcription 
factors with different histone modifications was studied in ESCs. Cross-correlation functions 
of TAF3, Oct4 or Otx2 vs. H3K4me3, H3K9me3, H3K27ac and H3K36me3 are shown. 
Binding of TAF3 strongly correlates with H3K4me3 and H3K27ac, which mark active 
promoters and enhancers in mouse ESCs (1, 2). The binding of TAF3 to enhancers is in line 
with publications showing that active enhancers are transcribed by the RNA Polymerase II 
machinery (3) and that TAF3 mediates chromatin-looping events that regulate transcriptional 
activation (4). Oct4 and Otx2 are two transcription factors that regulate pluripotency and 
differentiation. Their binding correlates with H3K27ac in agreement with previous reports (5). 
The peaks in the correlation curves reflect the ~300 bp distance between the binding site of 
the transcription factor and the modified nucleosome, which was also found recently (6). For 
each of the three transcription factors, maximum correlation with H3K36me3 was found at 
shift distances around 10 kb, which is similar to the average gene length and indicates that 
these factors globally bind adjacent to active genes. TAF3, Oct4 and Otx2 binding is 
uncorrelated with H3K9me3, which is consistent with their role in active transcription.  
 
  



MCORE - Supporting Material 

17 

 

 
 
 
Figure S15 | Spatial extension and co-localization of different features in ESCs versus 
NCs. Correlation functions for replicates of H3K4me1, H3K4me3, H3K27ac, H3K36me3 and 
RNA Polymerase II (RNAP II) ChIP-seq, RNA-seq (RNA) and RNAP II ChIA-PET data 
(RNAP II-ChIA) in ESCs (blue) and NCs (black) reflect the domain structures of the 
respective features. Cross-correlation functions (red) between the same feature in ESCs and 
NCs quantify the co-localization of this feature in both cell types. Most features depicted 
here did not drastically change their global distribution during differentiation because cross- 
and replicate correlation functions are similar to each other. 
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Figure S16 | Heterochromatin reorganization during differentiation. Cross correlation 
functions between H3K27me3 and H3K4me1/H3K36me3 in ESCs (blue) or NCs (black) are 
shown. H3K27me3 exhibited increased co-localization with activating marks in NCs. Error 
bars indicate s.e.m. among replicates. 
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Figure S17 | DNA methylation and inter-chromosomal contacts. (A) Cross correlation 
functions for DNA methylation and different histone modifications in ESCs (left) and NCs 
(right) are shown. Error bars indicate s.e.m. among replicates. (B) Cross-correlation 
functions for inter-chromosomal contact sites (Hi-C trans) and DNA methylation (5mC), RNA 
Polymerase II (RNAP II) and RNAP II ChIA-PET (RNAP II-ChIA) in ESCs (left) and NCs 
(right) are shown. RNAP II and RNAP II contact sites became moderately enriched at the 
surface of the chromosome territory in NCs, whereas 5mC tended to localize inside 
chromosome territories in both cell types. Small absolute values of correlation coefficients 
might be due to the relatively low number of inter-chromosomal contacts across the genome. 
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Correlation 

function 
Sliding win-

dow binning a 
Peak a 
calling 

Multi-scale 
representation 

Probabilistic 
network 
models 

Deconvolved 
correlation 

Strand-speci-
fic correlation 

Tool(s) MCORE cisGenome, 
SiSSRs, SPP MACS, SICER MSR ChromHMM, 

Segway Arpeggio SPP 

Platform Java various Python Matlab script or 
compiler runtime  

Java, 
Python  

Java R-script 

Sequencing 
data type Unrestricted Unrestricted ChIP-seq Unrestricted Unrestricted ChIP-seq ChIP-seq 

Mixed data 
type analysis 
implemented 

Yes No No No b Yes No No 

Applications 
Quality control, 
domain features, 
spatial relations 

Local feature 
enrichment 

Local feature 
enrichment 

Multi-scale 
feature 
enrichment 

Segmentation 
into feature 
states  

Comparison of 
data sets, local 
structure 

Quality control 
for sequencing 
data 

Correction c Input and/or 
control Input or control Input or control 

Mappability, GC 
content, input or 
control 

Input or control Input or control None 

Detected 
feature scale 

1 bp –  
1 chromosome 

1 bp –  
1 chromosome 

< 10 kb (MACS) 
variable (SICER) 

1 bp –  
1 chromosome 

1 bp –  
1 chromosome 40 bp – 8 kb Fixed window 

size 

Information 
on shifted 
relationships 

Yes No No Limited b No No No 

Required 
input 
parameters  

None Window size 

MACS: p-value 
threshold, tag 
length/shift 
SICER: size of 
gap & window, 
FDR 

Resolution, scale 
number, p-value 
threshold 

State number, p-
value threshold None None 

Number of 
data sets 2 1 1 1 b >1 1 1 

Noise 
sensitivity  Low d Low High d n.d. n.d. Low Low 
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Genome locus 
annotation No Yes Yes Yes Yes No Yes 

Output e 

Domain sizes, 
nucleosome 
spacing, spatial 
relationships, 
normalized 
occupancy 

Enrichment over 
average Local enrichment Scale dependent 

enrichment 

Length 
distribution, 
abundance of 
chromatin states 

Feature profile, 
nucleosome 
spacing 

Peak separation 
distance 

Operating 
system f All All All Unix, Windows 

All (ChromHMM) 
Linux (Segway) 

Unix, Mac OS X All 

Comment 
Low sensitivity to 
noise, bias and 
undersampling 

Read counting in 
a window of 
predefined size  

Restricted scale-
range 

Can be applied 
as a peak caller 
with pruning. 

Predefined 
number and type 
of states. 

Removes large-
scale structures 
by filtering 

Recommended 
analysis prior to 
peak calling 

Reference This study (7-9) (10-12) (13) (14-17) (18) (7, 19) 

 

Table S1 | Comparison of MCORE with other software tools 

The table represents a non-comprehensive list of tools that are used to extract information about chromatin features from deep sequencing data sets. 
a Exemplary tools are mentioned. For other programs see compilations in ref. (20, 21). 
b MSR can be applied to identify region of simultaneous enrichments for two different ChIP-seq data sets by computing a matrix of segments, but this 

analysis is not part of the current implementation. In some cases differential correlation of the matrix indicates the presence of shifted correlations. 
c Control reactions depend on the type of sequencing data and could involve for example a ChIP-seq reaction without the specific antibody.  

d See ref. (22) for peak calling and Figs. S5 and S6 for MCORE 
e The “enrichment” analysis of a given feature would also provide the information about its depletion with respect to a given average signal. 
f All operating systems refers to Unix, Windows and Mac OS X. 
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Feature Function Location Reference 

5mC repression, splicing, TF 
binding CpG dinucleotides (23) 

H3K4me1 poised enhancer (24) 

H3K4me3 activation promoter (25) 

H3K9ac activation promoter (26) 

H3K9me3 repression promoter, enhancer, repeats (27) 

H3K27ac activation promoter, enhancer (24) 

H3K27me3 repression promoter, enhancer, CpG islands (27) 

H3K36me3 activation, splicing active gene bodies (28, 29) 

H3K4me1, 
H3K27ac activation enhancer (24) 

H3K4me3, 
H3K27me3 bivalent promoter (30) 

RNAP II transcription promoter, active gene bodies, 
active nuclear compartments (31, 32) 

RNAP II 
ChIA-PET 

promoter-promoter/ 
enhancer interactions promoter, enhancer (33, 34) 

Hi-C trans interactions between two 
chromosomes 

surface of  
chromosome territory (35, 36) 

RNA transcript transcribed chromatin (37) 

 

Table S2 | Overview of chromatin features assessed in this study. Due to the plethora 
of functions associated with each feature only a coarse-grained assignment of the most 
important function is provided. 
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ESC H3K4me3 H3K9me3 H3K27me3 H3K36me3 

number 
of 

domains 

3 4 5 3 

value SE value SE value SE value SE 
a1 (%) 18.0 0.5 27.6 0.6 25.3 1.2 26.9 <0.5 
a2 (%) 75.7 0.6 46.4 2.4 20.0 4.3 51.4 3.0 
a3 (%) 6.3 0.3 21.0 3.0 23.3 6.0 21.7 1.8 
a4 (%) - - 5.0 3.9 22.1 3.5 - - 
a5 (%) - - - - 9.3 8.3 - - 
b1 (bp) 132 2 107 2 106 3 119 2 
b2 (bp) 926 6 1586 18 3198 173 14803 296 
b3 (kb) 33 6 11 2 16 2 356 105 
b4 (kb) - - 1121 704 322 46 - - 
b5 (kb) - - - - 4481 195 - - 
c1 (%) 99 fixed 98 <0.05 69 1 97 1 
c2 (bp) 173 fixed 182 9 207 5 182 5 
c3 (bp) 1000 fixed 654 340 219 9 802 303 
n1 1.97 0.05 2.20 0.10 3.31 0.27 2.30 0.50 
n2 1.25 0.01 1.11 0.00 1.96 0.25 0.62 0.01 
n3 0.38 0.02 0.64 0.10 1.28 0.33 0.45 0.04 
n4 - - 0.39 0.10 0.79 0.17 - - 
n5 - - - - 3.96 0.97 - - 
 
Table S3 | Fit parameters for selected correlation functions in ESCs. Correlation 
functions calculated for replicates of H3K4me3, H3K9me3, H3K27me3 and H3K36me3 
(Figs. 2 A and S11) were fitted with Eq. 7 (Materials and Methods), yielding the indicated fit 
parameters and corresponding standard errors (SE). The minimum number of domains 
required to yield uncorrelated fit residuals was chosen. The amplitudes a1-a5 represent the 
relative domain abundance, the decay length parameters b1-b5 represent half of the 
respective domain sizes, and the value of c2 reflects nucleosome spacing. See text and 
Materials and Methods for further details. 
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NC H3K4me3 H3K9me3 H3K27me3 H3K36me3 

number 
of 

domains 

3 4 4 3 

value SE value SE value SE value SE 

a1 (%) 18.2 1.5 47.5 3.1 54.7 1.2 25.7 0.4 
a2 (%) 79.9 1.5 23.2 3.6 11.5 1.9 57.3 0.9 
a3 (%) 1.9 1.9 17.7 2.9 17.5 2.4 17.0 0.9 
a4 (%) - - 11.6 5.5 16.3 3.2 - - 
b1 (bp) 243 4 202 19 111 2 111 1 
b2 (bp) 985 14 2036 142 1791 91 11848 287 
b3 (kb) 617 106 64 13 48 9 1412 85 
b4 (kb) - - 3771 256 3132 131 - - 
c1 (%) 98 <0.5 74 4 82 2 99 <0.5 
c2 (bp) 134 3 175 4 218 15 182 6 
c3 (bp) 3017 3017a 367 41 224 27 11505 11505a 
n1 2.01 0.12 2.31 0.60 2.67 0.09 2.47 0.07 
n2 1.43 0.03 1.11 0.15 1.54 0.24 0.59 0.01 
n3 0.53 0.07 0.62 0.13 0.52 0.09 0.79 0.05 
n4 - - 1.56 0.24 1.64 0.15 - - 
 
Table S4 | Fit parameters for selected correlation functions in NCs. Correlation 
functions calculated for replicates of H3K4me3, H3K9me3, H3K27me3 and H3K36me3 
(Figs. 2 B and S11) were fitted with Eq. 7, yielding the indicated fit parameters and 
corresponding standard errors (SE) as described in the Materials and Methods section and 
the legend to Table S3.  
 
a Fit error truncated since it exceeded the allowed parameter range 
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target cell type accession 
replicate1 

accession 
replicate2 reference 

Input ESC GSM1516068 GSM1516069 This study 
Input ESC SRX499123 SRX499124 (5) 
IgG ESC GSM1516070  GSM1516071 This study (RA073) 
IgG ESC GSM1516072 GSM1516073 This study (PP500P) 
IgG ESC SRR331056 SRR331057 (4) 
5mC ESC  SRX080191  (38) 
H3K27ac ESC GSM1516076 GSM1516077 This study (ab4729) 
H3K27me3 ESC GSM1516074 GSM1516075 This study (ab6002)) 
H3K36me3 ESC GSM1516082 GSM1516083 This study (ab9050) 
H3K4me1 ESC GSM1516080  GSM1516081 This study (ab8895) 
H3K4me3 ESC GSM1516086 GSM1516087 This study (ab8580) 
H3K9me3 ESC GSM1516084 GSM1516085 This study (ab8898) 
Hi-C ESC SRX116341 SRX116342 (35) 
Input ESC SRR317225 SRR317226 ENCODE 
Oct4 ESC SRX499114 SRX499115 (5) 
Otx2 ESC SRX499116 SRX499117 (5) 

RNA ESC GSM1516088 
GSM1516089 

GSM1516090 
GSM1516091 This study 

RNAP II ESC SRR489721 SRR489722 ENCODE 
RNAP II-ChIA ESC SRX243706 SRX243707  (34) 
TAF3 ESC SRR331054 SRR331055 (4) 
Input NPC SRX604258 SRX604259 (39) 
IgG NPC GSM1516092 GSM1516093 This study (RA073) 
5mC NPC SRX080193-5  (38) 
H3K27ac NPC GSM1516096 GSM1516097 This study (ab4729) 
H3K27me3 NPC GSM1516094 GSM1516095 This study (ab6002)) 
H3K36me3 NPC SRX604262 SRX604263 (39) 
H3K4me1 NPC GSM1516100 GSM1516101 This study (ab8895) 
H3K4me3 NPC GSM1516102 GSM1516103 This study (ab8580) 
H3K9me3 NPC SRX604260 SRX604261 (39) 
Hi-C Cortex SRX128219 SRX128220 (35) 
Input Brain E14.5 SRR489727 SRR578284 ENCODE 

RNA NPC GSM1516104 
GSM1516105 

GSM1516106 
GSM1516107 This study 

RNAP II Brain E14.5 SRR578272 SRR578273 ENCODE 
RNAP II-ChIA NPC SRX243710  (34) 
 
Table S5 | Summary of data sets used in this study. 
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